Answer : Option 1
as given in the question sinA= 1/2,
we know \(cotA=\frac{cosA}{sinA}\)
\(cosA=\sqrt[]{1-sin^A}\)
\( \implies \) cosA=\(\sqrt[]{1-\frac{1}{4}}\)
=\(\sqrt[]{\frac{3}{4}}\)
\( \implies \) cotA=cosA/ssinA=\(\sqrt[]{3}\)