Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
Since TP and TQ are tangents to a circle with centre O so that \(\angle \ POQ \ = \ 110° \),
\( \therefore \)\( OP \ ⊥ \ PT \) and \( OQ \ ⊥ \ QT \)
\(\Rightarrow \ ∠ \ OPT \ = \ 90° \) and \( ∠ \ OQT \ = \ 90° \)
In the quadrilateral TPOQ, we have
\( ∠ \ PTQ \ + \ ∠ \ TPO \ + \ ∠ \ POQ \ + \ ∠ \ OQT \ = \ 360° \)
[ \therefore Sum of all angles in a quadrilateral = 360° ]
\( ∠ \ PTQ \ + \ 90° \ + \ 110° \ + \ 90° \ = \ 360° \)
\( ∠ \ PTQ \ + \ 290° \ = \ 360° \)
\(\Rightarrow \ ∠ \ PTQ \ = \ 360° \ - \ 290° \)
\(\Rightarrow \ ∠ \ PTQ \ = \ 70° \)
\(\therefore \) Option (B) is correct.