Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
Here \(r \ = \ 15 \) cm and \( \theta \ = \ 60° \)
\(\therefore \) Area of the minor segment
\( = \ r^2[ \frac{ \pi \theta}{360} \ - \ \frac{1}{2}sin\theta] \)
\(= \ (15)^2[ \frac{3.14 \ × \ 60}{360} \ - \ \frac{1}{2} \ × \ sin60] \)
\(= \ 225[ \frac{3.14}{6} \ - \ \frac{1}{2} \ × \ \frac{ \sqrt{3}}{2}] \ \)
\( = \ 225( \frac{3.14 \ × \ 2 \ - \ 3 \sqrt{3}}{12}) \)
\( = \ 225( \frac{6.28 \ - \ 3 \ × \ 1.73}{12} ) \ \)
\( = \ \frac{225 \ × \ (6.28 \ - \ 5.19)}{12} \)
\( = \ \frac{225 \ × \ 1.09}{12} \ \)
\( = \ 20.4375 \)cm2
Area of the major segment
= Area of the circle - Area of the minor segment
\( = \ 3.14 \ × \ 225 \ - \ 20.4375 \ \)
\( = \ 706.5 \ - \ 20.4375 \)
\( = \ 686.0625 \) cm2