Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
Volume of the cylinder \(= \ \pi r^2 h \ = \ \frac{22}{7} \ × \ (60)^2 \ × \ 180 \)
\(= \ \frac{22 \ × \ 3600 \ × \ 180}{7} \ = \ \frac{14256000}{7} \) cm3
Volume of the solid = Volume of cone + Volume of hemisphere
\(= \ \frac{1}{3} \ × \ \frac{22}{7} \ × \ 60^2 \ × \ 120 \ + \ \frac{2}{3} \ × \ \frac{22}{7} \ × \ 60^3 \)
\(= \ \frac{3168000}{7} \ + \ \frac{3168000}{7} \ = \ \frac{6336000}{7} \) cm3
Volume of water left in the cylinder = Volume of the cylinder - Volume of the solid
\(= \ \frac{14256000}{7} \ - \ \frac{6336000}{7} \ = \frac{7920000}{7} \)
\(= \ 1131428.57142 \ = \ 1.131 \) m3