Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
Volume of the cylinder
\(= \ \pi r^2 h \ = \ \pi ( \frac{12}{2})^2 \ × \ 15 \ \)
\( = \ \pi \ × \ 6^2 \ × \ 15 \) cm3
Volume of a cone having hemispherical shape on the top
\(= \ \frac{1}{3} \pi r^2 h \ + \ \frac{2}{3} \pi r^3 \ \)
\( = \ \frac{1}{3} \pi r^2 (h \ + \ 2r) \)
\( = \ \frac{1}{3} \pi ( \frac{6}{2})^2 (12 \ + \ 2 \ × \ \frac{6}{2} ) \ \)
\( = \ \frac{1}{3} \pi \ × \ 3^2 \ × \ 18 \) cm3
Let the number of cone that can be filled with ice cream be n.
Then, \( \frac{1}{3} \pi \ × \ 3^2 \ × \ 18 \ × \ n \ = \ \pi \ × \ 6^2 \ × \ 15 \)
\( \Rightarrow \ n \ = \ \frac{\pi \ × \ 6 \ × \ 6 \ × \ 15\ × \ 3 \ }{ \pi \ × \ 3 \ × \ 18 \ × \ 3 \ } = \ 10 \)
\(\therefore \) 10 cones can be filled with ice cream.