Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour

The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure :
Expenditure Number of families
1000-1500 24
1500-2000 40
2000-2500 33
2500-3000 28
3000-3500 30
3500-4000 22
4000-4500 16
4500-5000 7


Answer :


The class 1500 – 2000 has the maximum frequency. Therefore, it is the modal class.

Here l = 1500,
h = 500,
f1 =40 ,
f0 =24 and
f2 =33

Now, let us substitute these values in the formula

Mode \(= \ l \ + \ ( \frac{f_1 \ - \ f_0}{2f_1 \ - \ f_0 \ - \ f_2}) \ × \ h \)

\(= \ 1500 \ + \ ( \frac{40 \ - \ 24}{2 \ × \ 40 \ - \ 24 \ - \ 33}) \ × \ 500\)

\(= \ 1500 \ + \ \frac{40 \ -\ 24}{80 \ - \ 24 \ - \ 33} \ × \ 500 \)

\(= \ 1500 \ + \ \frac{16}{23} \ × \ 500 \)

\(= \ 1500 \ + \ 347.83 \ = \ 1847.83 \)

\(\therefore \) Modal monthly expenditure = Rs. 1847.83

Let the assumed mean be A = 2750 and h = 500.

Class Interval \(f_i \) \( x_i \) \(d_i \ = \ x_i \ - \ A \) \(u_i \ = \ \frac{d_i}{h} \) \(f_i u_i \)
1000-1500 24 1250 -1500 -3 -72
1500-2000 40 1750 -1000 -2 -80
2000-2500 33 2250 -500 -1 -33
2500-3000 28 2750 0 0 0
3000-3500 30 3250 500 1 30
3500-4000 22 3750 1000 2 44
4000-4500 16 4250 1500 3 48
4500-5000 7 4750 2000 4 28
\( \sum f_i \ = \ 200 \) \( \sum f_i u_i \ = \ -35 \)

The formula to calculate the mean,

\( \overline{x} \ = \ A \ + h \frac{ \sum \ f_i x_i}{ \sum f_i} \)

\(= \ 2750 \ + \ ( \frac{-35}{200}) \ × \ 500 \)

\( = \ 2750 \ - \ 87.50 \ = \ 2662.50 \)

So, the mean monthly expenditure of the families is Rs 2662.50

NCERT solutions of related questions for Statistics

NCERT solutions of related chapters class 10 maths

NCERT solutions of related chapters class 10 science