Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
Given, 4z + 3 = 6 + 2z
\(\Rightarrow\) 4z – 2z + 3 = 6 (Transposing 2z to LHS)
\(\Rightarrow\)2z + 3 = 6
\(\Rightarrow\)2z = 6 – 3 (Transposing 3 to RHS)
\(\Rightarrow\)2z = 3
\(\Rightarrow\) z = \(\frac { 3 }{ 2 }\)
Hence z = \(\frac { 3 }{ 2 }\) is the required solution.
Checking:
4z + 3 = 6 + 2z
Substituting z = \(\frac { 3 }{ 2 }\) in the given equation, we have
LHS = 4z + 3 = 4 × \(\frac { 3 }{ 2 }\) + 3 = 6 + 3 = 9
RHS = 6 + 2z = 6 + 2 × \(\frac { 3 }{ 2 }\) = 6 + 3 = 9
LHS = RHS
Hence z = \(\frac { 3 }{ 2 }\) is the required solution.