Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
As per the given conditions, let ABCD be parallelogram such that
m∠B : m∠C = 3 : 2
So,let m∠B = \(3x^{\circ}\) and m∠C = \(2x^{\circ}\)
m∠B + m∠C = \(180^{\circ}\quad\) [Sum of adjacent angles = \(180^{\circ}\)]
\(\Rightarrow 3x + 2x = 180^{\circ}\)
\(\Rightarrow 5x = 180^{\circ}\)
\(\Rightarrow x = 36^{\circ}\)
Thus,\(∠B = 3 \times 36 = 108^{\circ}\)
\(∠C = 2 \times 36^{\circ}\) = \(72^{\circ}\)
\(∠B = ∠D = 108^{\circ}\)
and \(∠A = ∠C = 72^{\circ}\)
Hence, the angles of the parallelogram are \(108^{\circ}\), \(72^{\circ}\), \(108^{\circ}\) and \(72^{\circ}\).