Get it on Google Play
2.Express the following numbers in usual form.
(i) \(3.02 × 10^{-6}\)

(ii) \(4.5 × 10^4\)

(iii) \(3 × 10^{-8}\)

(iv) \(1.0001 × 10^9\)

(v) \(5.8 × 10^{12}\)

(vi) \(3.61492 \times 10^6\)


Answer :

(i)We have:\(3.02 × 10^{-6}\)

\(=\frac{302}{100}\times\frac{1}{10^6}=\frac{302}{100000000}\)

\(=302\times 10^{-8}=0.00000302\)

Thus, we have \(3.02 × 10^{-6}=0.00000302\)

(ii)We have:\(4.5 × 10^4\)

\(=\frac{45}{10}\times10^4=45\times 10^3\)

\(=45000\)

Thus, we have \(4.5 × 10^4=45000\)

(iii)We have:\(3 × 10^{-8}\)

\(=\frac{3}{10^8}=\frac{3}{100000000}\)

\(=0.00000003\)

Thus, we have \(3 × 10^{-8}=0.00000003\)

(iv)We have: \(1.0001 × 10^9\)

\(=\frac{10001}{10000}\times10^9=\frac{10001}{10^4}\times10^9\)

\(=10001\times 10^5=1000100000\)

Thus, we have\(1.0001 × 10^9=1000100000\)

(v)We have: \(5.8 × 10^{12}\)

\(=\frac{58}{10}\times10^{12}=58\times 10^{11}\)

\(=5800000000000\)

Thus, we have \(5.8 × 10^{12}=5800000000000\)

(vi)We have: \(3.61492 \times 10^6\)

\(=\frac{361492}{100000}\times10^6=\frac{361492}{10^5}\times10^6\)

\(=361492\times 10=3614920\)

Thus, we have \(3.61492 \times 10^6=3614920\)