Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour

Find the sum of the following AP’s.
(i) 2, 7, 12… to 10 terms
(ii) –37, –33, –29… to 12 terms
(iii) 0.6, 1.7, 2.8… to 100 terms
(iv) \({{1} \over {15}},{{1} \over {12}},{{1} \over {10}}…\)to 11 terms


Answer :

The formula for finding the sum of A.P. is \(S_n = {{n} \over {2}}[2a + (n - 1)d]\)

Where a= first term, d = common difference and n = number of terms

(i)2, 7, 12… to 10 terms
Here a = 2,
d = \(7 - 2 = 5\)
and n = 10
\(S_n = {{10} \over {2}}(4 + (10 - 1)5) \)
\(= 5(4 + 45) = 5(49) = 245\)


(ii) –37, –33, –29… to 12 terms

Here a = -37, d = \(-33 - (-37) = 4\) and n = 12

\(S_n = {{12} \over {2}}(-74 + (12 - 1)4) \)
\( = 6(-74 + 44) = 6(-30) = -180\)


(iii) 0.6, 1.7, 2.8… to 100 terms

Here a = 0.6, d = \(1.7 - 0.6 = 1.1\) and n = 100
\(S_n = {{100} \over {2}}(1.2 + (100 - 1)1.1) \)
\( = 50(1.2 + 108.9) \)
\( = 50(110.1) = 5505\)


(iv) \({{1} \over {15}},{{1} \over {12}},{{1} \over {10}}…\)to 11 terms

Here a = \({{1} \over {15}}\), d = \({{1} \over {12}} - {{1} \over {15}} = {{1} \over {60}}\) and n = 100

\(S_n = {{11} \over {2}}({{2} \over {15}} + (11 - 1){{1} \over {60}}) \)
\( = {{11} \over {2}}({{2} \over {15}} + {{1} \over {6}}) = {{11} \over {2}}({{9} \over {30}}) = {{33} \over {20}}\)

NCERT solutions of related questions for Arithmetic Progressions

NCERT solutions of related chapters class 10 maths

NCERT solutions of related chapters class 10 science