3 Tutor System
Starting just at 265/hour

# Q.6 The following fractions represent just three different numbers. Separate them into three groups of equivalent fractions, by changing each one to its simplest form. (a) $$\frac{2}{12}$$ (b) $$\frac{3}{15}$$ (c) $$\frac{8}{50}$$ (d) $$\frac{16}{100}$$ (e) $$\frac{10}{60}$$ (f) $$\frac{15}{75}$$ (g) $$\frac{12}{60}$$ (h) $$\frac{16}{96}$$ (i) $$\frac{12}{75}$$ (j) $$\frac{12}{72}$$ (k) $$\frac{3}{18}$$ (l) $$\frac{4}{25}$$

(a) $$\frac{2}{12} = \frac{2÷2}{12÷2} = \frac{1}{6}$$
(b) $$\frac{3}{15} = \frac{3÷3}{15÷3} = \frac{1}{5}$$
(c) $$\frac{8}{50} = \frac{8÷2}{50÷2} = \frac{4}{25}$$
(d) $$\frac{16}{100} = \frac{16÷4}{100÷4} = \frac{4}{25}$$
(e) $$\frac{10}{60} = \frac{10÷10}{60÷10} = \frac{1}{6}$$
(f) $$\frac{15}{75} = \frac{15÷15}{75÷15} = \frac{1}{5}$$
(g) $$\frac{12}{60} = \frac{12÷12}{60÷12} = \frac{1}{5}$$
(h) $$\frac{16}{96} = \frac{16÷16}{196÷16} = \frac{1}{6}$$
(i) $$\frac{12}{75} = \frac{12÷3}{75÷3} = \frac{4}{25}$$
(j) $$\frac{12}{72} = \frac{12÷12}{72÷12} = \frac{1}{6}$$
(k)$$\frac{3}{18} = \frac{3÷3}{18÷3} = \frac{1}{6}$$
(l) $$\frac{4}{25}$$
Totally there are 3 groups of equivalent fractions.
$$\frac{1}{6}$$= (a), (e), (h), (j), (k)
$$\frac{1}{5}$$ = (b), (f), (g)
$$\frac{4}{25}$$ = (c), (d), (i), (l)