Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
We have a parallelogram ABCD and rectangle ABEF such that
ar(||gm ABCD) = ar( rect. ABEF)
AB = CD [Opposite sides of parallelogram]
and AB = EF [Opposite sides of a rectangle]
\(\Rightarrow \) CD = EF
\(\Rightarrow \) AB + CD = AB + EF … (1)
BE < BC and AF < AD [In a right triangle, hypotenuse is the longest side]
\(\Rightarrow \) (BC + AD) > (BE + AF) …(2)
From (1) and (2), we have
(AB + CD) + (BC+AD) > (AB + EF) +( BE + AF)
\(\Rightarrow \) (AB + BC + CD + DA) > (AB + BE + EF + FA)
\(\Rightarrow \) Perimeter of parallelogram ABCD > Perimeter of rectangle ABEF.