Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour

Find the roots of the following quadratic equations if they exist by the method of completing square.
(i) \(2x^2 - 7x + 3 = 0\)
(ii) \(2x^2 + x - 4 = 0\)
(iii) \(4x^2 + 4\sqrt{3}x + 3 = 0\)
(iv) \(2x^2 + x + 4 = 0\)


Answer :

(i) \(2x^2 - 7x + 3 = 0\)

First step is to make coefficient of \(x^2 = 1\)

So on dividing equation by 2,

\(x^2 - {{7}\over{2}}x + {{3}\over{2}} = 0\)

On dividing the middle term of the equation by 2x, we get the expression :

\(({{7}\over{2}}x)({{1}\over{2x}}) = {{7}\over{4}}\)

On adding and subtracting square of \({{7}\over{4}}\) from the equation
\(\Rightarrow x^2 - {{7}\over{2}}x + {{3}\over{2}} = 0\)
\(\Rightarrow x^2 - {{7}\over{2}}x + {{3}\over{2}} + ({{7}\over{4}})^2 - ({{7}\over{4}})^2 = 0\)
\(\Rightarrow x^2 + ({{7}\over{4}})^2 - {{7}\over{2}}x + {{3}\over{2}} - ({{7}\over{4}})^2 = 0\)

Using identity {\((a-b)^2 = a^2 + b^2 -2ab\)}
\(\Rightarrow (x - {{7}\over{4}})^2 + {{24 - 49}\over{16}} = 0\)
\(\Rightarrow (x - {{7}\over{4}})^2 = {{49 - 24}\over{16}}\)
\(\Rightarrow (x - {{7}\over{4}})^2 = {{25}\over{16}}\)
\(\Rightarrow (x - {{7}\over{4}})^2 = ({{\pm5}\over{4}})^2\)

On taking square root on both sides:
\( \Rightarrow x - {{7}\over{4}} = {{5}\over{4}}\) and \({{-5}\over{4}}\)
\(\Rightarrow x = {{5}\over{4}} + {{7}\over{4}} = {{12}\over{4}} = 3\) and
\( \Rightarrow x= {{-5}\over{4}} + {{7}\over{4}} = {{2}\over{4}} = {{1}\over{2}}\)

Hence, \(x = {{1} \over {2}} , 3\)

(ii) \(2x^2 + x - 4 = 0\)

First step is to make coefficient of \(x^2 = 1\)

So on dividing equation by 2
\(x^2 + {{x}\over{2}} - 2 = 0\)

On dividing the middle term of the equation by 2x, we get the expression :
\(({{x}\over{2}})({{1}\over{2x}}) = {{1}\over{4}}\)

On adding and subtracting square of \({{1}\over{4}}\) from the equation \(x^2 + {{x}\over{2}} - 2 = 0\)
\(\Rightarrow x^2 + {{x}\over{2}} - 2 + ({{1}\over{4}})^2 - ({{1}\over{4}})^2 = 0\)
\(\Rightarrow x^2 + ({{1}\over{4}})^2 + {{x}\over{2}} - 2 - ({{1}\over{16}}) = 0\)

Using identity {\((a+b)^2 = a^2 + b^2 + 2ab\)}
\(\Rightarrow (x + {{1}\over{4}})^2 - {{33}\over{16}} = 0\)
\(\Rightarrow (x + {{1}\over{4}})^2 = {{33}\over{16}}\)

On taking square root both sides:
\(\Rightarrow x + {{1}\over{4}} = {{\sqrt{33}}\over{4}}\) and \({{-\sqrt{33}}\over{4}}\)
\(\Rightarrow x = {{\sqrt{33}}\over{4}} - {{1}\over{4}} = {{\sqrt{33} - 1}\over{4}}\) and \({{-\sqrt{33}}\over{4}} - {{1}\over{4}} = {{2}\over{4}} = {{-\sqrt{33} - 1}\over{4}}\)

Hence, \(x = {{\sqrt{33} - 1}\over{4}} , {{-\sqrt{33} - 1}\over{4}}\)

(iii) \(4x^2 + 4\sqrt{3}x + 3 = 0\)

First step is to make coefficient of \(x^2 = 1\)

So on dividing equation by 4
\(\Rightarrow x^2 + \sqrt{3}x + {{3} \over {4}} = 0\)

On dividing the middle term of the equation by 2x, we get the expression :
\( (\sqrt{3}x)({{1}\over{2x}}) \) = \({{\sqrt{3}}\over{2}}\)

On adding and subtracting square of \({{\sqrt{3}}\over{2}}\) (half of the middle term) from the equation \(x^2 + \sqrt{3}x + {{3} \over {4}} = 0\)
\(\Rightarrow x^2 + \sqrt{3}x + {{3} \over {4}} + ({{\sqrt{3}}\over{2}})^2 - ({{\sqrt{3}}\over{2}})^2 = 0\)
\(\Rightarrow x^2 + ({{3}\over{4}})^2 - \sqrt{3}x + {{3} \over {4}} - ({{3}\over{4}}) = 0\)

Using identity {\((a+b)^2 = a^2 + b^2 + 2ab\)}
\(\Rightarrow (x + {{\sqrt{3}}\over{2}})^2 = 0\)
\(\Rightarrow (x + {{\sqrt{3}}\over{2}}) (x + {{\sqrt{3}}\over{2}}) = 0\)

On taking square root both sides:
\(\Rightarrow x + {{\sqrt{3}}\over{2}} = 0\) and \(x + {{\sqrt{3}}\over{2}} = 0\)
\(\Rightarrow x = -{{\sqrt{3}}\over{2}}\) and \(x = -{{\sqrt{3}}\over{2}}\)

(iv) \(2x^2 + x + 4 = 0\)

First step is to make coefficient of \(x^2 = 1\)

So on dividing equation by 2
\(\Rightarrow x^2 + {{x}\over{2}} + 2 = 0\)

On dividing the middle term of the equation by 2x, we get the expression :
\(\Rightarrow({{x}\over{2}})({{1}\over{2x}}) = {{1}\over{4}}\)

On adding and subtracting square of \({{1}\over{4}}\) from the equation \(x^2 - {{7}\over{2}}x + {{3}\over{2}} = 0\)
\(\Rightarrow x^2 + {{x}\over{2}}x + 2 + ({{1}\over{4}})^2 - ({{1}\over{4}})^2 = 0\)
\(\Rightarrow x^2 + ({{1}\over{4}})^2 + {{x}\over{2}} + 2 - ({{1}\over{4}})^2 = 0\)

Using identity {\((a + b)^2 = a^2 + b^2 -2ab\)}
\(\Rightarrow (x + {{1}\over{4}})^2 + 2 - {{1}\over{16}} = 0\)
\(\Rightarrow (x + {{1}\over{4}})^2 = {{1}\over{16}} - 2 = {{1 - 32}\over{16}}\)
\(\Rightarrow (x + {{1}\over{4}})^2 = \frac{-31}{16}\)

On taking square root on both sides,

Right hand side does not exist since square root of negative number does not exist.

Therefore, there is no solution.

NCERT solutions of related questions for Quadratic Equations

NCERT solutions of related chapters class 10 maths

NCERT solutions of related chapters class 10 science