Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour

Find the roots of the following Quadratic Equations by applying quadratic formula.
(i) \(2x^2 - 7x + 3 = 0\)
(ii) \(2x^2 + x - 4 = 0\)
(iii) \(4x^2 + 4\sqrt{3}x + 3 = 0\)
(iv) \(2x^2 + x + 4 = 0\)


Answer :

(i) \(2x^2 - 7x + 3 = 0\)

The general form of equation is \(ax^2 + bx + c = 0\)

Quadratic formula = \(x = {{-b ± \sqrt{b^2 - 4ac}} \over {2a}}\)

\(\Rightarrow \) \(x = {{7 ± \sqrt{(-7)^2 - 4(2)(3)}} \over {(2)(2)}}\)
\(\Rightarrow \)\(x = {{7 ± \sqrt{49 - 24}} \over {4}}\)
\(\Rightarrow \)\(x = {{7 ± 5} \over {4}}\)
\(\Rightarrow \)\(x = {{7 + 5} \over {4}} , {{7 - 5} \over {4}}\)
\(\Rightarrow \)\(x = 3 , {{1} \over {2}}\)


(ii) \(2x^2 + x - 4 = 0\)

The general form of equation is \(ax^2 + bx + c = 0\)

Quadratic formula = \(x = {{-b ± \sqrt{b^2 - 4ac}} \over {2a}}\)

\(\Rightarrow \)\(x = {{-1 ± \sqrt{(1)^2 - 4(2)(-4)}} \over {(2)(2)}}\)
\(\Rightarrow \)\(x = {{-1 ± \sqrt{33}} \over {4}}\)
\(\Rightarrow \)\(x = {{-1 + \sqrt{33}} \over {4}} , {{-1 - \sqrt{33}} \over {4}}\)


(iii) \(4x^2 + 4\sqrt{3}x + 3 = 0\)

The general form of equation is \(ax^2 + bx + c = 0\)

Quadratic formula = \(x = {{-b ± \sqrt{b^2 - 4ac}} \over {2a}}\)

\(\Rightarrow \)\(x = {{-4\sqrt{3} ± \sqrt{(4\sqrt{3})^2 - 4(4)(3)}} \over {(2)(4)}}\)
\(\Rightarrow \)\(x = {{-4\sqrt{3} ± \sqrt{0}} \over {8}}\)
\(\Rightarrow \)\(x = {{-\sqrt{3}} \over {2}} , {{-\sqrt{3}} \over {2}}\)


(iv) \(2x^2 + x + 4 = 0\)

The general form of equation is \(ax^2 + bx + c = 0\)

Quadratic formula = \(x = {{-b ± \sqrt{b^2 - 4ac}} \over {2a}}\)

\(\Rightarrow \)\(x = {{-1 ± \sqrt{(1)^2 - 4(2)(-4)}} \over {(2)(2)}}\)
\(\Rightarrow \)\(x = {{-1 ± \sqrt{-31}} \over {4}}\)

since square root of negative number does not exist.

Therefore, there is no solution.

NCERT solutions of related questions for Quadratic Equations

NCERT solutions of related chapters class 10 maths

NCERT solutions of related chapters class 10 science