Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
We know that formula for area of a triangle whose vertices are \( (x_1,y_1) , (x_2,y_2) , (x_3,y_3) \) is,
= \( \frac{1}{2} \ | \ [x_1(y_2 - y_3) \ + \ x_2(y_3 - y_1) \ + \ x_3(y_1 - y_2)] \ | \)
(i) So, here \(x_1 \ = \ 2 \ , \ y_1 \ = \ 3 \ , \ x_2 \ = \ -1 \ , \ y_2 \ = \ 0 \ x_3 \ = \ 2 \ , \ y_3 \ = \ -4 \)
So, area of triangle = \( \frac{1}{2} \ | \ [ 2( 0 + 4 ) \ - \ 1(-4 - 3) \ + \ 2(3 - 0)] \ | \ = \ \frac{1}{2} \ | \ [ 8 + 7 + 6 ] \ | \ = \ \frac{21}{2} \)
∴ Area of triangle is \( \frac{21}{2} \) sq. units.
(ii) Similarly, here \(x_1 \ = \ -5 \ , \ y_1 \ = \ -1 \ , \ x_2 \ = \ 3 \ , \ y_2 \ = \ -5 \ x_3 \ = \ 5 \ , \ y_3 \ = \ 2 \) So, area of triangle = \( \frac{1}{2} \ | \ [ (-5)( -5 - 2 ) \ - \ 3(2 + 1) \ + \ 5(-1 + 5)] \ | \ = \ \frac{1}{2} \ | \ [ 35 + 9 + 20 ] \ | \ = \ 32 \)
∴ Area of triangle is \( 32 \) sq. units.