Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
In \(\triangle{ABC}\),
\(\angle{AED}\) = \(180^\circ\) -\(130^\circ\) = \(50^\circ\)
(linear pair of angles)
\(\therefore \) \(\angle{CED}\) = \(\angle{AED}\) = \(50^\circ\)
(Vertically opposite angles)
Also, \(\angle{ABD}\) = \(\angle{ACD}\)
(Since, the angles in the same segment are equal)
\(\Rightarrow \) \(\angle{ABE}\) = \(\angle{ECD}\)
\(\therefore \)
\(\angle{ABE}\) = \(180^\circ\) ...(ii)
Now, in \(\triangle{CDE}\),
\(\angle{BAC}\) + \(20^\circ\) + \(50^\circ\) = \(180^\circ\)
(from eq.(i) and (ii))
\(\Rightarrow \) \(\angle{BAC}\) + \(70^\circ\) = \(180^\circ\)
\(\Rightarrow \) \(\angle{BAC}\) = \(180^\circ\) - \(70^\circ\)
\(\therefore \) \(\angle{BAC}\) = \(110^\circ\)