Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
Given,
\( 15 cot A \ = \ 8 \)
\( \Rightarrow cotA \ = \ \frac{8}{15} \ = \ \frac{B}{P} \ = \ \frac{AB}{BC} \)
Let AB = 8k and BC = 15k.
Then, by Pythagoras theorem
\( AC \ = \ \sqrt{AB^2 + BC^2} \ \)
\( = \ \sqrt{(8k)^2 + (15k)^2} \ \)
\( = \ \sqrt{ 64k^2 + 225k^2} \ \)
\( = \ \sqrt{289k^2} \ = \ 17k \)
\( sinA \ = \ \frac{P}{H} \ = \ \frac{BC}{AC} \ = \ \frac{15k}{17k} \ = \ \frac{15}{17} \)
and, \( secA \ = \ \frac{H}{B} \ = \ \frac{AC}{AB} \ = \ \frac{17k}{8k} \ = \ \frac{17}{8} \)