Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
Given :
Radius (r) of conical cap = 7 cm
Height (h) of conical cap = 24 cm
Slant height (l) of the conical cap
\(\Rightarrow \) \({l}^2 = {h}^2 + {r}^2\)
\(\Rightarrow \) \(l^2= {7}^2 + {24}^2\) \({cm}^2\)
\(\Rightarrow \) \(l^2= 625\) \({cm}^2\)
\(\Rightarrow \) \({l}^2 = {25}^2 cm\)
\(\Rightarrow \) l = 25 cm
Therefore, the slant height Of the tent is 25 cm.
We know, CSA of tent
= \({\pi}rl\)
= [\(\frac{22}{7} × 7 × 25\) \({cm}^2\)]
= [\(22 × 1 × 25\) \({cm}^2\)]
= \(550\) \({cm}^2\)
Thus, CSA of 10 such caps
= (10 x 550) \({cm}^2\)
= 5500 \({cm}^2\)
\(\therefore \) 5500 \({cm}^2\) sheet will be required.