Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour

A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see figure). Find the sides AB and AC.


Answer :


Let us join AO, OC, and OB.



It is given that BD = 8cm, CD = 6 cm.

\(\therefore \) Lengths of two tangents drawn from an external point of circle are equal.

\(\therefore \) \(BF \ = \ BD \ = \ 8 cm \ , \)
\( \ CE \ = \ CD \ = \ 6 cm \ , \)
\( \ and \ let \ AF \ = \ AE \ = \ x \) cm.

Then, the sides of the triangle are 14 cm, (x+6) cm and (x+8) cm.

\(\therefore 2s \ = \ 14 \ + \ (x + 6) \ + \ (x+8) \ = \ 28 \ + \ 2x \)

\( \Rightarrow \ s \ = \ 14 \ + \ x \)

\( s \ - \ a \ = \ 14 \ + \ x \ - \ 14 \ = \ x \),

\( s \ - \ b \ = \ 14 \ + \ x \ - \ x \ - \ 6 \ = \ 8 \)

and, \( s\ - \ c \ = \ 14 \ + \ x \ - \ x \ - \ 8 \ = \ 6 \)

\(\therefore \) Area of \( ∆ \ ABC \ \)
\( = \ \sqrt{s(s \ - \ a)(s \ - \ b)(s \ - \ c)} \)
\(= \ \sqrt{(14 \ + \ x)(x)(8)(6)} \)

\( = \ \sqrt{48(x^2 \ + \ 14x)} \)

Also, Area of \( ∆ \ ABC \ \)
\( = \ Area (∆ OBC) \ + \ Area (∆ OCA) \ + \ Area (∆ OAB) \)

\( = \ \frac{1}{2} \ × \ BC \ × \ OD \ + \ \frac{1}{2} \ × \ CA \ × \ OE \ + \ \frac{1}{2} \ × \ AB \ × \ OF \)

\( = \ \frac{1}{2} \ × \ 14 \ × \ 4 \ + \ \frac{1}{2} \ × \ (x+6) \ × \ 4 \ + \ \frac{1}{2} \ × \ (x+8) \ × \ 4 \)

\( = \ 2(14 \ + \ x \ + \ 6 \ + \ x \ + \ 8) \ = \ 2(28 \ + \ 2x) \)

\(\therefore \sqrt{(48(x^2 \ + \ 14x)} \ = \ 4(14 \ + \ x) \)

Squaring, we get

\( 48(x^2 \ + \ 14x) \ = \ 16(14 \ + \ x)^2 \)

\( \Rightarrow \ 3(x^2 \ + \ 14x) \ = \ 196 \ + \ 28x \ + \ x^2 \)

\( \Rightarrow 2x^2 \ + \ 14x \ - \ 196 \ = \ 0 \)

\( \Rightarrow \ x^2 \ + \ 7x \ - \ 98 \ = \ 0 \)

\( \Rightarrow \ (x \ - \ 7)(x \ + \ 14) \ = \ 0 \)

\( \Rightarrow \ x \ = \ 7 \ or \ x \ = \ -14 \)

But x cannot be negative,

\( \therefore x \ = \ 7 \)

Thus, AB = x + 8 = 7 + 8 = 15 cm and AC = x + 6 = 6 + 7 = 13 cm.

Hence, the sides AB and AC are 15 cm and 13 cm respectively.

NCERT solutions of related questions for Circles

NCERT solutions of related chapters class 10 maths

NCERT solutions of related chapters class 10 science