Premium Online Home Tutors
3 Tutor System
Starting just at 265/hour
Answer :
1. We have LHS=\(4(x-5)=4\times x -4 \times 5 =4x-20\)
We should have RHS=LHS
Therefore,\(4(x-5)=4x-20\) is the correct statement.
2. We have LHS=\(x(3x + 2)=x \times 3x + x \times 2 =3x^2+2x\)
We should have RHS=LHS
Therefore,\(x(3x + 2)=3x^2+2x\) is the correct statement.
3.The given statement is incorrect only liked terms can be grouped together.Therefore, 2x+3y=2x+3y may be the correct statement
4.Using distributive property of multiplivation over addition:
\(LHS=x+2x+3x=6x\neq\) given RHS
So x+2x+3x=6x is the correct statement
5.Using distributive property of multiplivation over addition:
\(LHS=5y+2y+y-7y=(8-7)y=7y\neq\) given RHS
So 5y+2y+y-7y=7y is the correct statement
6.Using distributive property of multiplivation over addition:
\(LHS=3x + 2x=5x\neq\) given RHS
So 3x + 2x=5x is the correct statement
7.We have LHS:\((2x)^2 + 4(2x) + 7\)
\(=(2)^2\times (x)^2 + 4(2x) + 7= 4x^2 + 8x + 7\neq\) given RHS
So \((2x)^2 + 4(2x) + 7= 4x^2 + 8x + 7\) is the correct statement
8.We have LHS:\((2x)^2 + 5x\)
\(=(2)^2\times (x)^2 +5x= 4x^2 + 5x\neq\) given every value in RHS
So \((2x)^2 + 5x= 4x^2 +5x \) is the correct statement
9.We have LHS:\((3x + 2)^2\)
\(=(3x)^2+2\times (3x)\times(2)+2^2)=9x^2 +12x + 4\neq\) given RHS
So \((3x + 2)^2= 9x^2 +12x + 4\) is the correct statement
10.(a)Substituting x=-3 in \(x^2 +5x + 4\)
\(=(-3)^2+5(-3)+4=9-15+4=-2 \neq \) given RHS
So for x=-3, the value of \(x^2 +12x + 4 =-2\)
(b)Substituting x=-3 in \(x^2 -5x + 4\)
\(=(-3)^2-5(-3)+4=9+15+4=28 \neq \) given RHS
So for x=-3, the value of \(x^2 -5x + 4 =28\)
(c)Substituting x=-3 in \(x^2 +5x\)
\(=(-3)^2+5(-3)=9-15=-6 \neq \) given RHS
So for x=-3, the value of \(9x^2 +5x =62\)
11.We have, We have LHS:\((y-3)^2\)
\(=(y)^2-2\times (y)\times(3)+3^2)=y^2 -6y + 9\neq\) given RHS
So \((y-3)^2= y^2 -6y + 9\) is the correct statement
12.We have, We have LHS:\((z+5)^2\)
\(=(z)^2+2\times (z)\times(5)+5^2)=z^2 +10z + 25\neq\) given RHS
So \((z+5)^2= z^2 +10z + 25\) is the correct statement
13. Here we have LHS=\((2a+3b)(a-b)\)
\(=2a(a-b)+3b(a-b)=2a \times a - 2a times b+3b \times a - 3a \times b\)
\(=2a^2+ab-3b^2\neq \) given RHS
So \((2a+3b)(a-b)=2a^2+ab-3b^2\) is the correct statement
14.Here we have LHS=\((a+4)(a+2)\)
\(=a(a+2)+4(a+2)=a \times a + a times 2+4 \times a + 4 \times 2\)
\(=a^2+6a+8\neq \) given RHS
So \((a+4)(a+2)=a^2+6a+8\) is the correct statement
15.Here we have LHS=\((a-4)(a-2)\)
\(=a(a-2)-4(a-2)=a \times a - a \times 2-4 \times a + 4 \times 2\)
\(=a^2-6a+8\neq \) given RHS
So \((a-4)(a-2)=a^2-6a+8\) is the correct statement
16.We have LHS=\(\frac{3x^2}{3x^2}=1 \neq\) given RHS
So we have \(\frac{3x^2}{3x^2}=1\) as the correct statement
17.We have LHS=\(\frac{3x^2+1}{3x^2}=\frac{3x^2}{3x^2}+\frac{1}{3x^2}=1+\frac{1}{3x^2} \neq\) given RHS
So we have \(\frac{3x^2+1}{3x^2}=1+\frac{1}{3x^2}\) as the correct statement
18.We have LHS=\(\frac{3x}{3x+2}\neq \frac{1}2 \)
So we have \(\frac{3x^2}{3x^2}=\frac{3x}{3x+2}\) as the correct statement
19.Clearly in LHS we can see that, \(\frac{3}{4x+3} \neq \frac{1}{4x}\)
So we have \(\frac{3}{4x+3}=\frac{3}{4x+3}\) as the correct statement
20.Clearly in LHS we can see that, \(\frac{4x+5}{4x}=\frac{4x}{4x}+\frac{5}{4x}=1+\frac{5}{4x} \neq 5\)
So we have \(\frac{4x+5}{4x}=1+\frac{5}{4x}\) as the correct statement
21.Clearly in LHS we can see that, \(\frac{7x+5}{5}=\frac{7x}{5}+\frac{5}{5}=1+\frac{7x}{5} \neq 7x\)
So we have \(\frac{7x+5}{5}=1+\frac{7x}{5}\) as the correct statement